On Dilations of Fourier Multipliers on Weighted Lebesgue Spaces

Eugene Shargorodsky, Oleksiy Karlovych

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

For a given $p\in(1,\infty)$, we present an example of a Muckenhoupt
weight $w\in A_p$ and a Fourier multiplier $a$ on the weighted Lebesgue space
$L^p(w)$ such that, for any $\tau\in\mathbb{R}\setminus\{0,1\}$, the dilation
of $a$ given by $a_\tau(\xi)=a(\tau\xi)$ is not a Fourier multiplier on
$L^p(w)$.
Original languageEnglish
Title of host publicationAnalysis without Borders
Subtitle of host publicationAdvances and Applications
EditorsSergei Rogosin
PublisherBirkhäuser Cham
Pages109-122
Number of pages14
ISBN (Electronic)978-3-031-59397-0
ISBN (Print)978-3-031-59396-3
DOIs
Publication statusPublished - 23 Jul 2024

Publication series

NameOperator Theory: Advances and Applications
PublisherBirkhäuser Cham

Fingerprint

Dive into the research topics of 'On Dilations of Fourier Multipliers on Weighted Lebesgue Spaces'. Together they form a unique fingerprint.

Cite this