On the essential norms of Toeplitz operators on abstract Hardy spaces built upon Banach function spaces

Eugene Shargorodsky, Oleksiy Karlovych

Research output: Contribution to journalArticlepeer-review

Abstract

Let $X$ be a Banach function space over the unit circle such that the Riesz projection $P$ is bounded on $X$ and let $H[X]$ be the abstract Hardy space built upon $X$. We show that the essential norm of the Toeplitz operator $T(a):H[X]\to H[X]$ coincides with $\|a\|_{L^\infty}$ for every $a\in C+H^\infty$ if and only if the essential norm of the backward shift operator $T(\mathbf{e}_{-1}):H[X]\to H[X]$ is equal to one, where $\mathbf{e}_{-1}(z)=z^{-1}$. This result extends an observation by B\"ottcher, Krupnik, and Silbermann for the case of classical Hardy spaces.
Original languageEnglish
Article number8 (2025)
Number of pages9
JournalBoletín de la Sociedad Matemática Mexicana
Volume31
Publication statusPublished - 8 Nov 2024

Keywords

  • Banach function space
  • abstract Hardy space
  • Toeplitz operator
  • essential norm

Fingerprint

Dive into the research topics of 'On the essential norms of Toeplitz operators on abstract Hardy spaces built upon Banach function spaces'. Together they form a unique fingerprint.

Cite this