TY - JOUR
T1 - On the full range of Zippin and inclusion indices of rearrangement-invariant spaces
AU - Shargorodsky, Eugene
AU - Curbera, Guillermo P.
AU - Karlovych, Oleksiy
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/4/17
Y1 - 2024/4/17
N2 - Let X be a rearrangement-invariant space on [0, 1]. It is known that its Zippin indices β̲
X,β¯
X and its inclusion indices γ
X,δ
X are related as follows: 0≤β̲
X≤1/γ
X≤1/δ
X≤β¯
X≤1. We show that given β̲,β¯∈[0,1] and γ,δ∈[1,∞] satisfying β̲≤1/γ≤1/δ≤β¯, there exists a rearrangement-invariant space X such that β̲
X=β̲, β¯
X=β¯ and γ
X=γ, δ
X=δ.
AB - Let X be a rearrangement-invariant space on [0, 1]. It is known that its Zippin indices β̲
X,β¯
X and its inclusion indices γ
X,δ
X are related as follows: 0≤β̲
X≤1/γ
X≤1/δ
X≤β¯
X≤1. We show that given β̲,β¯∈[0,1] and γ,δ∈[1,∞] satisfying β̲≤1/γ≤1/δ≤β¯, there exists a rearrangement-invariant space X such that β̲
X=β̲, β¯
X=β¯ and γ
X=γ, δ
X=δ.
UR - http://www.scopus.com/inward/record.url?scp=85190656310&partnerID=8YFLogxK
U2 - 10.1007/s13398-024-01599-8
DO - 10.1007/s13398-024-01599-8
M3 - Article
SN - 1578-7303
VL - 118
JO - Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
JF - Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
IS - 3
M1 - 93
ER -