Abstract
Arterial hypertension continues to be a major health burden. Development of new antihypertensive drugs that engage vasodilatory mechanisms not harnessed by available therapies offer therapeutic potential. Oxidants induce an interprotein disulfide in protein kinase G Iα (PKG Iα) at C42, which is associated with its targeting and activation, resulting in vasodilation and blood pressure lowering. Consequently, we developed an assay and screened for electrophilic drugs that activate PKG Iα by selectively targeting C42, as such compounds have potential as novel antihypertensives with a mechanism of action that differs from current therapies. In this way, a drug that we termed G1 was identified, which targets C42 of PKG Iα to induce vasodilation of isolated resistance blood vessels and blood pressure lowering in a mouse model of angiotensin II-induced hypertension. In contrast, these antihypertensive effects were deficient in angiotensin II-induced hypertensive C42S PKG Iα knockin mice. These transgenic mice were engineered to have the reactive cysteinyl thiol replaced with a hydroxyl so that it cannot react with endogenous vasodilatory oxidants or electrophiles such as drug G1. These studies, therefore, provide validation of PKG Iα C42 as the target of G1, as well as proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans.
Original language | English |
---|---|
Pages (from-to) | 577-586 |
Number of pages | 10 |
Journal | Hypertension |
Volume | 70 |
Issue number | 3 |
Early online date | 17 Jul 2017 |
DOIs | |
Publication status | Published - 29 Oct 2017 |
Keywords
- Journal Article