Abstract
Objectives
The aim of this study was to compare fully quantitative cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) myocardial perfusion and myocardial perfusion reserve (MPR) measurements in patients with coronary artery disease (CAD).
Background
Absolute quantification of myocardial perfusion and MPR with PET have proven diagnostic and prognostic roles in patients with CAD. Quantitative CMR perfusion imaging has been established more recently and has been validated against PET in normal hearts. However, there are no studies comparing fully quantitative CMR against PET perfusion imaging in patients with CAD.
Methods
Forty-one patients with known or suspected CAD prospectively underwent quantitative 13N-ammonia PET and CMR perfusion imaging before coronary angiography.
Results
The CMR-derived MPR (MPRCMR) correlated well with PET-derived measurements (MPRPET) (r = 0.75, p < 0.0001). MPRCMR and MPRPET for the 2 lowest scoring segments in each coronary territory also correlated strongly (r = 0.79, p < 0.0001). Absolute CMR perfusion values correlated significantly, but weakly, with PET values both at rest (r = 0.32; p = 0.002) and during stress (r = 0.37; p < 0.0001). Area under the receiver-operating characteristic curve for MPRPET to detect significant CAD was 0.83 (95% confidence interval: 0.73 to 0.94) and for MPRCMR was 0.83 (95% confidence interval: 0.74 to 0.92). An MPRPET ≤1.44 predicted significant CAD with 82% sensitivity and 87% specificity, and MPRCMR ≤1.45 predicted significant CAD with 82% sensitivity and 81% specificity.
Conclusions
There is good correlation between MPRCMR and MPRPET. For the detection of significant CAD, MPRPET and MPRCMR seem comparable and very accurate. However, absolute perfusion values from PET and CMR are only weakly correlated; therefore, although quantitative CMR is clinically useful, further refinements are still required.
The aim of this study was to compare fully quantitative cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) myocardial perfusion and myocardial perfusion reserve (MPR) measurements in patients with coronary artery disease (CAD).
Background
Absolute quantification of myocardial perfusion and MPR with PET have proven diagnostic and prognostic roles in patients with CAD. Quantitative CMR perfusion imaging has been established more recently and has been validated against PET in normal hearts. However, there are no studies comparing fully quantitative CMR against PET perfusion imaging in patients with CAD.
Methods
Forty-one patients with known or suspected CAD prospectively underwent quantitative 13N-ammonia PET and CMR perfusion imaging before coronary angiography.
Results
The CMR-derived MPR (MPRCMR) correlated well with PET-derived measurements (MPRPET) (r = 0.75, p < 0.0001). MPRCMR and MPRPET for the 2 lowest scoring segments in each coronary territory also correlated strongly (r = 0.79, p < 0.0001). Absolute CMR perfusion values correlated significantly, but weakly, with PET values both at rest (r = 0.32; p = 0.002) and during stress (r = 0.37; p < 0.0001). Area under the receiver-operating characteristic curve for MPRPET to detect significant CAD was 0.83 (95% confidence interval: 0.73 to 0.94) and for MPRCMR was 0.83 (95% confidence interval: 0.74 to 0.92). An MPRPET ≤1.44 predicted significant CAD with 82% sensitivity and 87% specificity, and MPRCMR ≤1.45 predicted significant CAD with 82% sensitivity and 81% specificity.
Conclusions
There is good correlation between MPRCMR and MPRPET. For the detection of significant CAD, MPRPET and MPRCMR seem comparable and very accurate. However, absolute perfusion values from PET and CMR are only weakly correlated; therefore, although quantitative CMR is clinically useful, further refinements are still required.
Original language | English |
---|---|
Pages (from-to) | 1546-1555 |
Number of pages | 10 |
Journal | Journal of the American College of Cardiology |
Volume | 60 |
Issue number | 16 |
DOIs | |
Publication status | Published - 16 Oct 2012 |