Regio- and Stereospecificity in the Oxygenation of Arachidonic Acid Catalyzed by Leu597 Mutants of Rabbit 15-Lipoxygenase: A QM/MM Study

Reynier Suardíaz, Laura Masgrau, José M. Lluch, Àngels González-Lafont

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

We combined quantum mechanics/molecular mechanics calculations with molecular dynamics simulations to study the addition of O2 to the pentadienyl radical of arachidonic acid (AA) catalyzed by the Leu597Val and Leu597Ala mutants of rabbit 15-lipoxygenase (15-rLO). In the Leu597Val mutant, the addition of O2 to C15 of AA is the predominant path, although it reduces the C15/C11 product ratio by almost ten times with respect to the wildtype enzyme. The S stereochemistry is kept. Mutation to Ala causes just the opposite effect: regiospecificity favoring addition to C15 is somewhat sharper than that in the wildtype, but the stereochemistry is R. This is because the extra space created by the mutation to Ala is big enough for AA to move so that it can adopt an alternative binding mode, and this opens new feasible paths for the attack of O2. So, we showed that the Leu597Ala mutant of 15r-LO works as an aspirin-acetylated cyclooxygenase-2, which makes 15-(R)- hydroperoxyeicosatetraenoic acid.
Original languageEnglish
Pages (from-to)2303–2310
JournalChemPhysChem
Volume15
Issue number11
Early online date17 Apr 2014
DOIs
Publication statusPublished - 24 Jul 2014

Fingerprint

Dive into the research topics of 'Regio- and Stereospecificity in the Oxygenation of Arachidonic Acid Catalyzed by Leu597 Mutants of Rabbit 15-Lipoxygenase: A QM/MM Study'. Together they form a unique fingerprint.

Cite this