Abstract
Background:
The faecal immunochemical test (FIT) is replacing the guaiac faecal occult blood test in colorectal cancer screening. Increased uptake and FIT positivity will challenge colonoscopy services. We developed a risk prediction model combining routine screening data with FIT concentration to improve the accuracy of screening referrals.
Methods:
Multivariate analysis used complete cases of those with a positive FIT (20 μg g−1) and diagnostic outcome (n=1810; 549 cancers and advanced adenomas). Logistic regression was used to develop a risk prediction model using the FIT result and screening data: age, sex and previous screening history. The model was developed further using a feedforward neural network. Model performance was assessed by discrimination and calibration, and test accuracy was investigated using clinical sensitivity, specificity and receiver operating characteristic curves.
Results:
Discrimination improved from 0.628 with just FIT to 0.659 with the risk-adjusted model (P=0.01). Calibration using the Hosmer–Lemeshow test was 0.90 for the risk-adjusted model. The sensitivity improved from 30.78% to 33.15% at similar specificity (FIT threshold of 160 μg g−1). The neural network further improved model performance and test accuracy.
Conclusions:
Combining routinely available risk predictors with the FIT improves the clinical sensitivity of the FIT with an increase in the diagnostic yield of high-risk adenomas.
The faecal immunochemical test (FIT) is replacing the guaiac faecal occult blood test in colorectal cancer screening. Increased uptake and FIT positivity will challenge colonoscopy services. We developed a risk prediction model combining routine screening data with FIT concentration to improve the accuracy of screening referrals.
Methods:
Multivariate analysis used complete cases of those with a positive FIT (20 μg g−1) and diagnostic outcome (n=1810; 549 cancers and advanced adenomas). Logistic regression was used to develop a risk prediction model using the FIT result and screening data: age, sex and previous screening history. The model was developed further using a feedforward neural network. Model performance was assessed by discrimination and calibration, and test accuracy was investigated using clinical sensitivity, specificity and receiver operating characteristic curves.
Results:
Discrimination improved from 0.628 with just FIT to 0.659 with the risk-adjusted model (P=0.01). Calibration using the Hosmer–Lemeshow test was 0.90 for the risk-adjusted model. The sensitivity improved from 30.78% to 33.15% at similar specificity (FIT threshold of 160 μg g−1). The neural network further improved model performance and test accuracy.
Conclusions:
Combining routinely available risk predictors with the FIT improves the clinical sensitivity of the FIT with an increase in the diagnostic yield of high-risk adenomas.
Original language | English |
---|---|
Journal | BJC: British Journal of Cancer |
DOIs | |
Publication status | Published - 2 Nov 2017 |
Keywords
- Cancer screening
- Risk factors
- Rectal cancer
- Diagnosis
- Colon cancer