Abstract
Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, $\xi$ be a random variable on $(\Omega, \mathcal{F}, \mathbf{P})$, $\mathcal{G}$ be a sub-$\sigma$-algebra of $\mathcal{F}$, and let $\mathbf{E}^\mathcal{G} = \mathbf{ E}(\cdot | \mathcal{G})$ be the corresponding conditional expectation operator. We obtain sharp estimates for the moments of $\xi - \mathbf{E}^\mathcal{G}\xi$ in terms of the moments of $\xi$. This allows us to find the optimal constant in the bounded compact approximation property of $L^p([0, 1])$, $1 < p < \infty$.
Original language | English |
---|---|
Pages (from-to) | 368-381 |
Number of pages | 14 |
Journal | Mathematische Nachrichten |
Volume | 296 |
Issue number | 1 |
Early online date | 18 Dec 2022 |
Publication status | Published - 29 Jan 2023 |
Keywords
- math.PR
- math.FA
- 60E15, 47A30, 46B20, 46B28, 46E30, 47B07