TY - JOUR
T1 - Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors
AU - Groom, Harriet C. T.
AU - Yap, Melvyn W.
AU - Galao, Rui Pedro
AU - Neil, Stuart J. D.
AU - Bishop, Kate N.
PY - 2010/3/16
Y1 - 2010/3/16
N2 - Xenotropic murine leukemia virus-related virus (XMRV) is a recently discovered gammaretrovirus that has been linked to prostate cancer and chronic fatigue syndrome. This virus is therefore an important potential human pathogen and, as such, it is essential to understand its host cell tropism. Intriguingly, infectious virus has been recovered from patient-derived peripheral blood mononuclear cells. These cells express several antiviral restriction factors that are capable of inhibiting the replication of a wide range of retroviruses, including other gamma retroviruses. This raises the possibility that, similar to HIV, XMRV may have acquired resistance to restriction. We therefore investigated the susceptibility of XMRV to a panel of different restriction factors. We found that both human APOBEC3 and tetherin proteins are able to block XMRV replication. Expression of human TRIM5 alpha, however, had no effect on viral infectivity. There was no evidence that XMRV expressed countermeasures to overcome restriction. In addition, the virus was inhibited by factors from nonhuman species, including mouse Apobec3, tetherin, and Fv1 proteins. These results have important implications for predicting the natural target cells for XMRV replication, for relating infection to viral pathogenicity and pathology, and for the design of model systems with which to study XMRV-related diseases.
AB - Xenotropic murine leukemia virus-related virus (XMRV) is a recently discovered gammaretrovirus that has been linked to prostate cancer and chronic fatigue syndrome. This virus is therefore an important potential human pathogen and, as such, it is essential to understand its host cell tropism. Intriguingly, infectious virus has been recovered from patient-derived peripheral blood mononuclear cells. These cells express several antiviral restriction factors that are capable of inhibiting the replication of a wide range of retroviruses, including other gamma retroviruses. This raises the possibility that, similar to HIV, XMRV may have acquired resistance to restriction. We therefore investigated the susceptibility of XMRV to a panel of different restriction factors. We found that both human APOBEC3 and tetherin proteins are able to block XMRV replication. Expression of human TRIM5 alpha, however, had no effect on viral infectivity. There was no evidence that XMRV expressed countermeasures to overcome restriction. In addition, the virus was inhibited by factors from nonhuman species, including mouse Apobec3, tetherin, and Fv1 proteins. These results have important implications for predicting the natural target cells for XMRV replication, for relating infection to viral pathogenicity and pathology, and for the design of model systems with which to study XMRV-related diseases.
U2 - 10.1073/pnas.0913650107
DO - 10.1073/pnas.0913650107
M3 - Article
SN - 1091-6490
VL - 107
SP - 5166
EP - 5171
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 11
ER -