Abstract
Background: T2* relaxometry has been identified as a non-invasive way to study the placenta in-vivo with good potential to identify placental insufficiency. Typical interpretation links T2* values to oxygen concentrations. This study aimed to comprehensively assess T2* maps as a marker of placental oxygenation in-vivo.
Methods: A multi-echo gradient echo echo planar imaging sequence is used in a cohort of 84 healthy pregnant women. Special emphasis is put on spatial analysis: histogram measures, Histogram Asymmetry Measure (HAM) and lacunarity. Influences of maternal, fetal and placental factors and experimental parameters on the proposed measures are evaluated.
Results: T2* maps were obtained from each placenta in less than 30sec. The previously reported decreasing trend in mean T2* with gestation was confirmed (3.45 ms decline per week). Factors such as maternal age, BMI, fetal sex, parity, mode of delivery and placental location were shown to be uncorrelated with T2* once corrected for gestational age. Robustness of the obtained values with regard to variation in segmentation and voxel-size were established. The proposed spatially resolved measures reveal a change in T2* in late gestation.
Conclusions: T2* mapping is a robust and quick technique allowing quantification of both whole volume and spatial quantification largely independent of confounding factors.
Methods: A multi-echo gradient echo echo planar imaging sequence is used in a cohort of 84 healthy pregnant women. Special emphasis is put on spatial analysis: histogram measures, Histogram Asymmetry Measure (HAM) and lacunarity. Influences of maternal, fetal and placental factors and experimental parameters on the proposed measures are evaluated.
Results: T2* maps were obtained from each placenta in less than 30sec. The previously reported decreasing trend in mean T2* with gestation was confirmed (3.45 ms decline per week). Factors such as maternal age, BMI, fetal sex, parity, mode of delivery and placental location were shown to be uncorrelated with T2* once corrected for gestational age. Robustness of the obtained values with regard to variation in segmentation and voxel-size were established. The proposed spatially resolved measures reveal a change in T2* in late gestation.
Conclusions: T2* mapping is a robust and quick technique allowing quantification of both whole volume and spatial quantification largely independent of confounding factors.
Original language | English |
---|---|
Journal | Wellcome Open Research |
DOIs | |
Publication status | Published - 5 Nov 2019 |
Keywords
- Placental MRI, Relaxometry, Quantitative MRI, Pregnancy, Preeclampsia