TY - JOUR
T1 - The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation
AU - Phillips, Mary L
AU - Gregory, Lloyd J
AU - Cullen, Sarah
AU - Coen, Steven
AU - Ng, Virginia
AU - Andrew, Christopher
AU - Giampietro, Vincent
AU - Bullmore, Edward
AU - Zelaya, Fernando
AU - Amaro, Edson
AU - Thompson, David G
AU - Hobson, Anthony R
AU - Williams, Steven C R
AU - Brammer, Michael
AU - Aziz, Qasim
PY - 2003/3/1
Y1 - 2003/3/1
N2 - Sensory experience is influenced by emotional context. Although perception of emotion and unpleasant visceral sensation are associated with activation within the insula and dorsal and ventral anterior cingulate gyri (ACG), regions important for attention to and perception of sensory and emotional information, the neural mechanisms underlying the effect of emotional context upon visceral sensation remain unexplored. Using functional MRI, we examined neural responses to phasic, non-painful oesophageal sensation (OS) in eight healthy subjects (seven male; age range 27-36 years) either during neutral or negative emotional contexts produced, respectively, by presentation of neutral or fearful facial expressions. Activation within right insular and bilateral dorsal ACG was significantly greater (P <0.01) during OS with fearful than with neutral faces. In a second experiment, we measured anxiety, discomfort and neural responses in eight healthy male subjects (age range 22-41 years) to phasic, non-painful OS during presentation of faces depicting either low, moderate or high intensities of fear. Significantly greater (P <0.01) discomfort, anxiety and activation predominantly within the left dorsal ACG and bilateral anterior insulae occurred with high-intensity compared with low-intensity expressions. Clusters of voxels were also detected in this region, which exhibited a positive correlation between subjective behaviour and blood oxygenation level-dependent effect (P <0.05). We report the first evidence for a modulation of neural responses, and perceived discomfort during, non-painful visceral stimulation by the intensity of the negative emotional context in which the stimulation occurs, and suggest a mechanism for the effect of negative context on symptoms in functional pain disorders.
AB - Sensory experience is influenced by emotional context. Although perception of emotion and unpleasant visceral sensation are associated with activation within the insula and dorsal and ventral anterior cingulate gyri (ACG), regions important for attention to and perception of sensory and emotional information, the neural mechanisms underlying the effect of emotional context upon visceral sensation remain unexplored. Using functional MRI, we examined neural responses to phasic, non-painful oesophageal sensation (OS) in eight healthy subjects (seven male; age range 27-36 years) either during neutral or negative emotional contexts produced, respectively, by presentation of neutral or fearful facial expressions. Activation within right insular and bilateral dorsal ACG was significantly greater (P <0.01) during OS with fearful than with neutral faces. In a second experiment, we measured anxiety, discomfort and neural responses in eight healthy male subjects (age range 22-41 years) to phasic, non-painful OS during presentation of faces depicting either low, moderate or high intensities of fear. Significantly greater (P <0.01) discomfort, anxiety and activation predominantly within the left dorsal ACG and bilateral anterior insulae occurred with high-intensity compared with low-intensity expressions. Clusters of voxels were also detected in this region, which exhibited a positive correlation between subjective behaviour and blood oxygenation level-dependent effect (P <0.05). We report the first evidence for a modulation of neural responses, and perceived discomfort during, non-painful visceral stimulation by the intensity of the negative emotional context in which the stimulation occurs, and suggest a mechanism for the effect of negative context on symptoms in functional pain disorders.
U2 - 10.1093/brain/awg065
DO - 10.1093/brain/awg065
M3 - Article
C2 - 12566287
SN - 1460-2156
VL - 126
SP - 669
EP - 684
JO - Brain
JF - Brain
IS - 3
ER -