Abstract
In the modern wind turbine industry, one of the core processes is the assembly of the bolt-nut connections of the hub, which requires tightening bolts and nuts to obtain well-distributed clamping force all over the hub. This force deals with nonlinear uncertainties due to the mechanical properties and it depends on the final torque and relative angular position of the bolt/nut connection. This paper handles the control problem of automated bolt tightening processes. To develop a controller, the process is divided into four stages, according to the mechanical characteristics of the bolt/nut connection: a fuzzy logic controller (FLC) with expert knowledge of tightening process and error detection capability is proposed. For each one of the four stages, an individual FLC is designed to address the highly nonlinearity of the system and the error scenarios related to that stage, to promptly prevent and avoid mechanical damage. The FLC is implemented and real time executed on an industrial PC and finally validated. Experimental results show the performance of the controller to reach precise torque and angle levels as well as desired clamping force. The capability of error detection is also validated.
Original language | English |
---|---|
Article number | 6782444 |
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY |
Volume | 23 |
Issue number | 1 |
Early online date | 2 Apr 2014 |
DOIs | |
Publication status | Published - 2014 |