TY - JOUR
T1 - Diffusive hydrodynamics of inhomogenous Hamiltonians
AU - Durnin, Joseph
AU - De Luca, Andrea
AU - De Nardis, Jacopo
AU - Doyon, Benjamin
PY - 2021/12/10
Y1 - 2021/12/10
N2 - We derive a large-scale hydrodynamic equation, including diffusive and dissipative effects, for systems with generic static position-dependent driving forces coupling to local conserved quantities. We show that this equation predicts entropy increase and thermal states as the only stationary states. The equation applies to any hydrodynamic system with any number of local, parity and time-symmetric conserved quantities, in arbitrary dimension. It is fully expressed in terms of elements of an extended Onsager matrix. In integrable systems, this matrix admits an expansion in the density of excitations. We evaluate exactly its two-particle–hole contribution, which dominates at low density, in terms of the scattering phase and dispersion of the quasiparticles, giving a lower bound for the extended Onsager matrix and entropy production. We conclude with a molecular dynamics simulation, demonstrating thermalisation over diffusive time scales in the Toda interacting particle model with an inhomogeneous energy field.
AB - We derive a large-scale hydrodynamic equation, including diffusive and dissipative effects, for systems with generic static position-dependent driving forces coupling to local conserved quantities. We show that this equation predicts entropy increase and thermal states as the only stationary states. The equation applies to any hydrodynamic system with any number of local, parity and time-symmetric conserved quantities, in arbitrary dimension. It is fully expressed in terms of elements of an extended Onsager matrix. In integrable systems, this matrix admits an expansion in the density of excitations. We evaluate exactly its two-particle–hole contribution, which dominates at low density, in terms of the scattering phase and dispersion of the quasiparticles, giving a lower bound for the extended Onsager matrix and entropy production. We conclude with a molecular dynamics simulation, demonstrating thermalisation over diffusive time scales in the Toda interacting particle model with an inhomogeneous energy field.
UR - http://www.scopus.com/inward/record.url?scp=85120787824&partnerID=8YFLogxK
U2 - 10.1088/1751-8121/ac2c57
DO - 10.1088/1751-8121/ac2c57
M3 - Article
SN - 1751-8113
VL - 54
JO - Journal of Physics A: Mathematical and Theoretical
JF - Journal of Physics A: Mathematical and Theoretical
IS - 49
M1 - 494001
ER -